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Heat Loss of Circular Electric Waves

in Helix Waveguides*
J. A. MORRISON~

Summary—This paper presents a theoretical calculation of the
eddy current losses of circular electric waves in a closely-wound helix
waveguide. The wire diameter is assumed large compared to the skin

depth, but small compared to the guide diameter and the operating

wavelength, so that the fields near the wire are quasi-static and may

be determined by conformal mapping.

When the wires are in contact, the waveguide wall is effectively a
metal surface with grooves of semicircular cross section, the current
flow being parallel to the direction of the grooves. The power loss for
this case is computed to be about 8.5 per cent higher than in a wave-

guide with smooth metal walls. Wken the wires are not in contact,
the wall is treated as a grating of parallel, round wires. The increase
in power loss over a smooth surface is approximately 22.5 per cent

when the wires are separated by a distance equal to their diameter.

1. INTRODUCTION

I

T is well established experimentally that circular

electric waves can be propagated in a closely-wound

helix waveguide of small round wires, with total

losses only slightly higher than the losses in a conven-

tional round waveguide of the same size. In practice

the wire diameter will be large compared to the eddy

current skin depth, but small compared to the diameter

of the guide and the operating wavelength. Under these

assumptions, hlarcatiliz has recently used an inverse

technique to estimate the increase in eddy current loss

in the special case when the wires of the helix are touch-

ing, so that the waveguide wall is effectively a metal

surface with grooves of semicircular cross section. I t

is the purpose of this paper to show that the quasi-

static problem associated with Marcatili’s problem can

be solved exactly by conformal mapping, leading to an

approximate calculation of the heat loss, and that the

eddy current loss can also be calculated approximately

when the wires of the helix are not in contact with one

another.

1I. BOUNDARY WITH SEMICIRCULAR GROOVES

For a circular electric wave in an ordinary round

waveguide the wall currents are purely circumferential,

the electric field at the wall is essentially zero, and the

magnetic field is in the axial direction. Since helix

waveguides are wound with as small a pitch as possible,

we may regard the magnetic field at the wall as per-

pendicular to the wires and the current as parallel to
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the wires. Since the wires are small compared to the

guide radius and the wavelength, we may neglect cu rva-

ture effects and propagation effects, and consider the

two-dimensional problem of a quasi-static magnetic

field bounded ou one side by a grating of perfectly con-

ducting round wires, and uniform at great distances on

the other side. The basic assumption here is that the

magnetic field outside the metal is essentially that which

would exist outside a smooth perfectly conducting

guide wall. The power dissipated by eddy currents is

then approximately proportional to the integral of the

square of the tangential magnetic field over the con-

ducting surfaces.

A two-dimensional quasi-static magnetic field ,Hei”f

in the x-y plane may be derived from a complex po-

tential function3 W(Z) by

H = grad (Re TV), (1)

if w is an analytic function of the complex variable

z = x +iy. The condition that the normal component of

H vanishes on a perfectly conducting boundary is satis-

fied if Im JJ’ is constant on such a boundary.

Thus in the case of the periodic semicircular grc)oves

the problem becomes one of finding an analytic func-

tion U’ whose imaginary part is constant on the con-

ducting boundary of Fig. 1 and is such that WJWHOZ,
asy-~, for then, from (1), lZ~lZO and lYv~O, so that

at a great distance from the conducting surface there is

a magnetic field of constant strength in the direction

indicated in Fig. 1.

Y
t+ Ho

Fig. 1—Cross section of semicircular groows.

Because of the periodicity of the shape of the conduct-

ing surface, it is sufficient to consider just a strip ill the

z plane as shaded in Fig. ~(a). It is shown in Appendix

I that by means of the conformal transformation which
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u
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where the contour in the z plane is the semicircle in

Fig. 2(a). From the relation between z and ~ given in

(2) it is shown in Appendix I that

:=: (1[K(k)]2dc
l’lj #JO

= [f
:2 1‘(1 – c)[K(L’)]’dc + 1 , (6)

o

where c = W and K(k) is the complete elliptic integral of

~0- t the first kind and modulus k. Numerical integration
A -101

(c) (d)
gives

Fig. 2—Conformal transformation from grooved to flat strip.
(a) z plane, (b) w plane, (c) ~ plane, (d) f plane.

P
= 1.085.

To
(7)

This may be compared with Marcatili’s estimate,
maps the upper half-plane into this strip and some ele-

mentary transformations, the flat strip A B CD in the
P/Po=l.09+o.ol.

~ ‘~+~zI plane, Fig. 2(d), is mapped into the strip in the
MTe now determine the position of the effective smooth

z plane by the conformal transformation,
waveguide wall, which enables the phase constant of

the propagating wave to be correctly calculated. In

zX(i tan ~)
z=

K(sec {) ‘

where K(w) is the complete elliptic integral of the first

kind5 and modulus w.

In the ~ plane

2H0
w=—{,

T
(3)

for this makes Im W’= O on q = O, and hence on the semi-

circle B C of the conducting surface and further, since

the strip in the z plane is of unit width whilst that in the

{ plane is of width n-/2, WNHOZ as ya IX.

Now the power dissipated by eddy currents in a sur-

face S of conductivity g, whose radius of curvature is

large compared to the skin depth ~, is given aPproxi-

mate1y3 by

P.L JI I s

dW d~
H,2ds=~ ——ds,

2g8 s 2gti s dz d~
(4)

where H~ is the amplitude of the tangential component

of the magnetic field on the conducting surface, and the

second expression follows by using the quasi-static mag-

netic field given by (1) and the Cauchy-Riemann rela-

tions.4

For a plane conducting surface, W= ETOZ.Hence, from

(3) and (4) the ratio of the power dissipated in the semi-

circular groove of unit diameter to that dissipated in a

plane strip is

Appendix ‘I it ‘is shown that ~=(7rz/2) –i log 2, as

(2) y = Im z++ ~. Hence, from (3),

( )W-HO z–~log2 =WO, asy-++m. (8)
T

Thus Im WO = O on y = 2/7r log 2 = d, which is therefore

the position of the effective smooth waveguide wall.

Since the wire radius is here supposed to be $, the ratio

D of the displacement of the effective smooth wave-

guide wall from the trough of the groove to the radius

of the grove cross section is

D=2d=~log 2=0.88. (9)
T

II 1. BOUNDARY OF CYI.INDRICAL WIRES

Turning now to the case when the pitch of the helix

is greater than the wire diameter we are concerned with

the plane grating of parallel cylindrical wires, as shown

in Fig. 3. There is supposed to be an impressed mag-

netic field ll~ei”t parallel to and on one side of the plane

containing the axes of the wh-es and perpendicular to

the wires. There will be leakage through the wires but

to the order of the quasi-static approximation this

may be neglected. (The circular electric wave can be re-

solved into conical waves which are reflected on the

waveguide walls. In the rectified model this means

plane waves incident on the grating and from the equiv-

alent circuit” for this problem it follows that the grating

acts as a short-circuit in the limit as the ratio of pitch to

5 P. F. Byrd and M. D. Friedman, ‘~Handbook of Elliptic In.
tegrals for Engineers and Physicists, ” Springer-Verlag, Berlin, Ger-

“ N. Marcuvitz, ‘(Waveguide Handbook, ” McGraw-Hill Book
Co., Inc., New York, N. Y., M.I.T. Rad. Labs. Ser., vol. 10, p. 286;

many; 1954. 1951.
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wavelength tends to zero.) The actual leakage is soaked

up by a lossy external sheath.

Thus, on the side of the impressed field, the quasi-

static magnetic field is of constant strength Ho at a

great distance from the wires, whilst on the other side,

the field vanishes at a great distance from the wires.

The problem is then one of finding an analytic function

W whose imaginary part is constant on the conducting

cylinders and is such that WaO as x4 — w and

W~iIIOz, as x-++ ~ so that, from (1), HZSO and

HU-+ –Ho. But Smythe7 gives the solution to the equiv-

alent electrostatic problem wherein the surfaces Im W

= O are circular cylinders within two per cent pro-

vided that b > 2C in Fig. 3, the error decreasing as b/c

increases and increasing as b/c decreases. Here 2b is the

distance between the axes of successive wires and 2C is

the diameter of the wires both in the direction along

the line of axes and in the direction perpendicular to

that. As b/c approaches unity, the cylinder becomes a

square of side 2c. The maximum deviation from a circle

is quoted later for the three values of the ratio b/c for

which numerical results are given.

‘t w.

1-
.“

Fig. 3—Cross section of cylindrical wires.

1n the present notation, from Smythe,7

‘=%(sin-’(’)+sin-’[%%a’10)
where

‘= .,l:x,(tanh-’[:ua
+Atanh-’[%a(11)

and appropriate values are given to the inverse func-

tions and the square roots. The { plane is cut along the

real axis from — 1 to + cc , and from —a to — co. The

quantity A is the smallest positive root of

‘in[31+’~1=‘anh[%(’++)l’12)
and

a=co’h’[x’++)l+cot’[%(’+’)lo“3)
~ W. R. Srnythe, “Static ancl Dynamic Electricity, ” McGraw-

Hill Book Co., Inc., New York, N. Y., p. 98; 1950.

(a)

I
(b)

Fig. 4—Conformal transformation of the strip with semicircular
intrusion into cut plane. (a) z plane, (b) ~ plane.

These equations arise from the condition that

OC=C=OD, in Fig. 4(a).

From (4) the ratio of the power dissipated in the

parallel grating of cylindrical wires to that dissipated

in a plane grating is

PI

–J
DdW d~

— — ds, (14)
Fo = bH02 B dz dz

since for the plane grating W= ~HOz, x >0 and W== O,

z<O. From (10), (11), and (14) it is shown in Appendix

II that

([1 – Ao(sin-’ X, k)]
‘=(l+A) —
Fo <1 – A’

+c0sE(1+A)lc0t[3(1+’)1%)‘“)
where

Here AO(~, k) is Heuman’s Lambda function’ and K(k)

is as before. The displacement

..+. [’-%1d =lim

of the effective smooth waveguide wall is found in Ap-

pendix II, (39), and the ratio D = d/c, where c is the axial

radius of the wire, is thus

D=——
7rc(l + x) ( -’)’”’tanh[il+-:)]
+‘:’”’’k’+’)])“ (17)

Eq. (12) was solved numerically for three values of b/c

and the quantities P/F’O and D were then calculated

from (15) and (17). These values are tabuli~ted below,

together with the values Y~ax/c, where r~aX is the largest

value of the radius r of the cylinders forlming the grat-
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ing, as given by Richmond. 8 It is to be expected that as

b/c decreases the values of P/Po are smaller than those

for exactly circular wires and conversely for the values

of D.

b/c P/P, D /f’nm c

2 1.225 0.64 1.018
3/2 1.140 0.80 1.063
4/.3 1,105 0.86 1.11

Since for b/c = 1 and exactly circular wires the cal-

culated value of P/Po is 1.085, (7), the value of P/po

for b/c = 4/3 as given above is about one per cent low.

In extrapolating for b/c between 1 and 2 the values cal-

culated for b/c = 1, 3/2, and 2 should be used. Thus the

extrapolated value of P/Po for b/c= 6/5 is 1.10. This

compares favorably with the experimental value of 1.13

for the power loss ratio, obtained by J. A. young of

these Laboratories in the case of a helix waveguide with

wire diameter 0.0045” and separation 0.0009. ”

IV. CONCLUSION

An approximate theoretical calculation of heat losses

in a metallic waveguide surface with boundary of

periodic semicircular grooves and of cylindrical wires

has been made, using the magnetic field of a perfect

smooth guide. Also calculated was the displacement of

the effective smooth waveguide wall from the wire axes.

From comparison with experiment it appears that the

theory gives quite a good prediction of the heat loss

when it is borne in mind that the experimental value

will be slightly higher due to leakage into the outer

jacket and the presence of a dielectric coating on the

wire which presumably tends to concentrate the fields

slightly and increase the eddy currents.

It should also be noted that the results apply to any

low-loss mode in a helix of finite pitch; ie., any mode

for which, either by accident or design, the wall cur-

rents follow the direction of the wires.1

APPENDIX I

We first give the conformal transformation z= z({)

which maps the flat strip in the f plane, Fig. 2 (d), into

the strip with the semicircular groove in the z plane,

Fig. 2 (a). The successive transformations from the ~

plane are given by~
.

(18)

L
T = – Cos (2f), ~.

(1–7)’

K(<r– w)
~=~

K(<Z) ‘

where

s

1 df
K(<ii) = (19)

o V(1 — P)(1 — Z@)

is the complete elliptic integral of the first kind and

8 W. R. Richmond, ‘(On the electrostatic field of a plane or circular
grating formed of thick round wires, ” Proc. Lend. Math. Sot. ser. 2,
VO1.22, p. 389; 1923,

modulus ~~. Combining the transformation of (18) we

obtain

(20)

We calculate here the expression for P/l’. given in (5).

On the semicircle in the z plane, Fig. 2(a), setting

~ =&, 05&5 (r/2) in (20), it is found that

K
z= k = sin $,

(K – iK’) ‘
(21)

where K, K’ are the complete elliptic integrals of the

first kinds with complementary moduli k and

k’= 1~1 – k2, respectively. From (21), it follows that

dz i7r
—=_
d(

(q
2 sin& cos .$(K – iK’)”

where use has been made of the identity5

d K’

()

r

% ? = ‘2 K2kk’2”
(23)

From (5) and (22),

D Q P ?r/2
.“

—=_ J (K2 + K“) sin{ cos &d&
Po 7r3 o

—— : ~ ‘[ K(k) ]’dc;
o

Since5

r

1
(2c – l)K’dc

-0

= [(c – 1)(2c – l)K’ + 2(c -

c = kzo (24]

l)KE + E’];= 1, (25)

(24) may be written

P

(s

1
— 52

)
(1 – c)K’dc + 1 .

Fo–7r3 o
(26)

Finally, as Im (~) -++ mr sec @O and ~ tan ~=

– (1 – 2e2’~). Hence (5), from (20),

~z~i(log2— if), as Im(~)~+m. (27)

APPENDIX II

We here determine P/Po as given by (14), where W

and z are given as functions of ~ by (10) and (1 1). The

quantities ~ and a are given by (12) and (13) which

arise from the condition that OC= OD = c in Fig. 4(a),

namely, with
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d 2
0< tan–]

(a–l)<:’

—.
2b

d

2
tan–l ——

7r(l + A) (a – 1)

2bh

/

2
=C= tanh–1 . (28)

?r(l + k) (a+ 1)

The points A, B, C, D, E, F, G, H in the z plane cor-

respond to the points with the same letters in the .(’

plane, Fig. 4(b), which is cut along the real axis from

–lto+w and from –ato –@. From (10), Im(W)=O

for ~=&A-io, –1<$S1; Le., on the section BCD. In

the z plane this sec~on is close to a semicircle if b/c is

not close to 1 in which case the section is closer to a

square. For b = 2C the distance r from the origin O is

equal to c within two per cent and for b = 4/3c the error

is a little over ten per cents

In differential form (10) and (11) are

([1 - AO(sin-’ k, ~)]
‘=(l+A) —

To <1 – A’

+cOs[;(’+A)lcOt[=(l+’)1%)(34
where AO(6, k) is Heuman’s Lambda function,5 A is the

smallest positive root of (12), and

c0s2[3+A)l.(1–kz)= A2 (35)

Finally, we determine the length

() *
d = lim x——, IP=Im W.

HO
(36)

x+. +

Since this is independent of y, it is sufficient to take

y = O and consider the behavior as w+ co along DE in

iHob [(i-+ 1)’”+ ({+ a)l”] Fig. 4(a) or, equivalently, as $+ co on (’= &+;O, Fig.

(29) 4(b). From (29), the square roots all being positive on
27r (r – 1)1/’({ + 1)1/2(j- + a)l/’ ‘

[Q- + 1)1’2 + A(( – 1)1”]

(=g+io, $>1,
b

-, (30)
T(1 + A) if — l)l/g(f + 1)1/2(~ + a)l/2

(
v=—;: log [g + V“&’ – 1]

)

where appropriate values are to be given to the square

roots. +Iog (2f+a–l) +2{(g+a)(t–~

Dividing (29) by (30) we obtain [ (a+ 1) 1)) (37)

dW iHo(l + k) [(~ + 1)112 + (t + a)l”j

dz = 2 [(i- + 1)1’2 + X({ – 1)’/’]

. (31) since V = O at $ = 1; i.e., on the grating. Also, from (11),

for~=&+iO, ~>l,

values { t(e !~t!~emroots,

As X--+ m , and assigning the appropriate b log (2g+ a– 1) +2<(L+ a)(g –~
=x

([
—.

T(1 + x) (a+ 1) 1
dW

+iHo, asx+ +-~ ~+log &.+a+l)+2v’(&+ .)(g+ 1)

z
[ 1)(a–l) – “

(38)

dW
—-+0, asx+— m, (32) Thus, from (36)–(38), letting ~~ @,
dz

the difference arising because of the cuts in the ~ plane. d=
This is the desired behavior for W at great distances 2T(:+x,((1-’)10g[(a; IJ

from the wires.

From (14), (30), and (31),
+2’10’[(.: Il.

~=~~~([%~~$ ~]t.g+,o =--~-((1 -k)logtanh[~(l+~)]

[

dW d~ dz d%1)
7r(l + h)

d~
+ Z Z ‘V”Z Z r.&iO

_(l+x)
+Z’logta%(l+h’39)

2T using (28).

“s

1 [(CZ+ 1) + 2$]
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