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Heat Loss of Circular Electric Waves
in Helix Waveguides®

J. A. MORRISON?

Summary—This paper presents a theoretical calculation of the
eddy current losses of circular electric waves in a closely-wound helix
waveguide. The wire diameter is assumed large compared to the skin
depth, but small compared to the guide diameter and the operating
wavelength, so that the fields near the wire are quasi-static and may
be determined by conformal mapping.

When the wires are in contact, the waveguide wall is effectively a
metal surface with grooves of semicircular cross section, the current
flow being parallel to the direction of the grooves. The power loss for
this case is computed to be about 8.5 per cent higher than in a wave-
guide with smooth metal walls. When the wires are not in contact,
the wall is treated as a grating of parallel, round wires, The increase
in power loss over a smooth surface is approximately 22.5 per cent
when the wires are separated by a distance equal to their diameter.

1. INTRODUCTION

T is well established experimentally! that circular
}I electric waves can be propagated in a closely-wound
helix waveguide of small round wires, with total
losses only slightly higher than the losses in a conven-
tional round waveguide of the same size. In practice
the wire diameter will be large compared to the eddy
current skin depth, but small compared to the diameter
of the guide and the operating wavelength. Under these
assumptions, Marcatili® has recently used an inverse
technique to estimate the increase in eddy current loss
in the special case when the wires of the helix are touch-
ing, so that the waveguide wall is effectively a metal
surface with grooves of semicircular cross section. It
is the purpose of this paper to show that the quasi-
static problem associated with Marcatili’s problem can
be solved exactly by conformal mapping, leading to an
approximate calculation of the heat loss, and that the
eddy current loss can also be calculated approximately
when the wires of the helix are not in contact with one
another.

II. BoUNDARY WITH SEMICIRCULAR GROOVES

For a circular electric wave in an ordinary round
waveguide the wall currents are purely circumferential,
the electric field at the wall is essentially zero, and the
magnetic field is in the axial direction. Since helix
waveguides are wound with as small a pitch as possible,
we may regard the magnetic field at the wall as per-
pendicular to the wires and the current as parallel to
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the wires. Since the wires are small compared to the
guide radius and the wavelength, we may neglect curva-
ture effects and propagation effects, and consider the
two-dimensional problem of a quasi-static magnetic
field bounded on one side by a grating of perfectly con-
ducting round wires, and uniform at great distances on
the other side. The basic assumption here is that the
magnetic field outside the metal is essentially that which
would exist outside a smooth perfectly conducting
guide wall. The power dissipated by eddy currents is
then approximately proportional to the integral of the
square of the tangential magnetic field over the con-
ducting surfaces.

A two-dimensional quasi-static magnetic field He™?
in the x-y plane may be derived from a complex po-
tential function® W(z) by

H = grad (Re W), (1)

if W is an analytic function of the complex variable
z=2x-+4y. The condition that the normal component of
I vanishes on a perfectly conducting boundary is satis-
fied if Im TV is constant on such a boundary.

Thus in the case of the periodic semicircular grooves
the problem becomes one of finding an analytic func-
tion W whose imaginary part is constant on the con-
ducting boundary of Fig. 1 and is such that W~Hz,
as y— o, for then, from (1), H,—H, and H,—?0, so that
at a great distance from the conducting surface there is
a magnetic field of constant strength in the direction
indicated in Fig. 1.
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Fig. 1—Cross section of semicircular grooves.

Because of the periodicity of the shape of the conduct-
ing surface, it is sufficient to consider just a strip in the
z plane as shaded in Fig. 2(a). It is shown in Appendix
I that by means of the conformal transformation* which
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Fig. 2—Conformal transformation from grooved to flat strip.
(a) z plane, (b) w plane, (c) 7 plane, (d) ¢ plane.

maps the upper half-plane into this strip and some ele-
mentary transformations, the flat strip ABCD in the
{ =§&+1n plane, Fig. 2(d), is mapped into the strip in the
z plane by the conformal transformation,

1K (i tan §)

Z=m7 (2)

where K (w) is the complete elliptic integral of the first
kind® and modulus .
In the ¢ plane

2H,
W =

§ 3)

for this makes Im W =0 on =0, and hence on the semi-
circle BC of the conducting surface and further, since
the strip in the 2z plane is of unit width whilst that in the
¢ plane is of width 7/2, W~H,s as y— .

Now the power dissipated by eddy currents in a sur-
face .S of conductivity g, whose radius of curvature is
large compared to the skin depth §, is given approxi-
mately?® by

1 1 dW dw
P:—f’H;[2ds=—— — ——ds, 4)
2g8J 5 206J s dz dz

where H, is the amplitude of the tangential component
of the magnetic field on the conducting surface, and the
second expression follows by using the quasi-static mag-
netic field given by (1) and the Cauchy-Riemann rela-
tions.*

For a plane conducting surface, W= Hyz. Hence, from
(3) and (4) the ratio of the power dissipated in the semi-
circular groove of unit diameter to that dissipated in a
plane strip is

$P. F. Byrd and M. D. Friedman, “Handbook of Elliptic In-
_tegrals for Engineers and Physicists,” Springer-Verlag, Berlin, Ger-
many; 1954,
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P4 0O 4 d&f
Ses [ 22y, (s)
Py 7*Jp dz di

where the contour in the z plane is the semicircle in
Fig. 2(a). From the relation between z and ¢ given in
(2) it is shown in Appendix I that

P 8 1

_ %[2_/;1(1 — OIKM®) e + 1}, 6)

where ¢=%? and K (k) is the complete elliptic integral of
the first kind and modulus k. Numerical integration
gives

P
— = 1.085. )

0

This may be compared with Marcatili's estimate,
P/Py=1.094+0.01.

We now determine the position of the effective smooth
waveguide wall, which enables the phase constant of
the propagating wave to be correctly calculated. In
Appendix I it is shown that ¢{~(wz/2)—i log 2, as
y=1Im g—+ . Hence, {from (3),

™

2
W~H0<z———log2>=Wg, as y— 4+ o. (8

Thus Im Wy=0 on y=2/n log 2=d, which is therefore
the position of the effective smooth waveguide wall.
Since the wire radius is here supposed to be 1, the ratio
D of the displacement of the effective smooth wave-
guide wall from the trough of the groove to the radius
of the grove cross section is

4
D =2d=-—1log2 = 0.88. (9)

T

ITI. BouNDARY OF CYLINDRICAL WIRES

Turning now to the case when the pitch of the helix
is greater than the wire diameter we are concerned with
the plane grating of parallel cylindrical wires, as shown
in Fig. 3. There is supposed to be an impressed mag-
netic field et parallel to and on one side of the plane
containing the axes of the wires and perpendicular to
the wires. There will be leakage through the wires but
to the order of the quasi-static approximation this
may be neglected. (The circular electric wave can be re-
solved into conical waves which are reflected on the
waveguide walls. In the rectified model this means
plane waves incident on the grating and from the equiv-
alent circuit® for this problem it follows that the grating
acts as a short-circuit in the limit as the ratio of pitch to

¢ N. Marcuvitz, “Wavegnide Handbook,” McGraw-Hill Book
Cg%., Inc., New York, N. Y., M.L.T. Rad. Labs. Ser., vol. 10, p. 286;
1951,
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wavelength tends to zero.) The actual leakage is soaked
up by a lossy external sheath.

Thus, on the side of the impressed field, the quasi-
static magnetic field is of constant strength H, at a
great distance from the wires, whilst on the other side,
the field vanishes at a great distance from the wires.
The problem is then one of finding an analytic function
W whose imaginary part is constant on the conducting
cylinders and 1s such that W—0 as x——« and
W~iHyz, as x—-+ o so that, from (1), H,—0 and
H,—— I, But Smythe? gives the solution to the equiv-
alent electrostatic problem wherein the surfaces ImW
=0 are circular cylinders within two per cent pro-
vided that #>2¢ in Fig. 3, the error decreasing as &/c
increases and increasing as b/c¢ decreases. Here 20 is the
distance between the axes of successive wires and 2¢ is
the diameter of the wires both in the direction along
the line of axes and in the direction perpendicular to
that. As &/¢ approaches unity, the cylinder becomes a
square of side 2¢. The maximum deviation from a circle
is quoted later for the three values of the ratio b/¢ for
which numerical results are given.

Fig. 3—Cross section of cylindrical wires.

In the present notation, from Smythe,”

Hob 25‘ + a — 1
= | qipt o1 1
w o <sm (&) -+ sin l: o :D, (10)

g = —ZE"_(tanh—-l |:(_§——1>1jjl
(1 4+ X\) ¢+ o)t
e [0
2 tanh [(; n a)WD’

and appropriate values are given to the inverse func-
tions and the square roots. The { plane is cut along the
real axis from —1 to 4+ =, and from —a to — «. The
guantity A is the smallest positive root of

sin I:g— 1+ A)-} = tanh [g(l + —;\—):I, (12)
and

4 = coth? [;LZ <1 + %)] + cot? B—; 1+ x)]. (13)

7 W. R. Smythe, “Static and Dynamic Electricity,” McGraw-
Hill Book Co., Inc., New York, N. Y., p. 98; 1950.

where

(11)
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Fig. 4—Conformal transformation of the strip with semicircular
intrusion into cut plane. (a} z plane, (b) ¢ plane.

These equations arise from the condition that

0C=c=0D, in Fig. 4(a).

From (4) the ratio of the power dissipated in the
parallel grating of cylindrical wires to that dissipated
in a plane grating is

P 1 fDdeW

— = — —ds,
Py bH?Jp dz dZ

(14)

since for the plane grating W=¢H,z, x>0 and W =0,
x<0. From (10), (11), and (14) it is shown in Appendix
IT that

P [1 — Ag(sint\, B)]
;—(14“)\)( T n

0
+ cos B_Z 1+ ?\):l cot B—Z (1+>\):| -I{—;;]\ez), (15)

where

" x}
- cos[%( + )_
=l —Fe ——

(16)
A

Here A¢(B, k) is Heuman’s Lambda function® and K (k)
is as before. The displacement

[ Im W:I
x —
g4 H,

d= lim
of the effective smooth waveguide wall is found in Ap-
pendix 11, (39), and the ratio D =d/c, where ¢ is the axial
radius of the wire, is thus

S -

i
27 log tan | — (1 A -
+ 2 dog ta [2b<+)]>

Eq. (12) was solved numerically for three values of /¢
and the quantities P/Py and D were then calculated
from (15) and (17). These values are tabulated below,
together with the values 7max/¢, Where 7max is the largest
value of the radius 7 of the cylinders forming the grat-

(17)
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ing, as given by Richmond.? It is to be expected that as
b/c decreases the values of P/P, are smaller than those
for exactly circular wires and conversely for the values
of D.

b/c P/P, D Pmax/C
2 1.225 0.64 1.018
3/2 1.140 0.80 1.063
4/3 1.105 0.86 1.11

Since for b/¢=1 and exactly circular wires the cal-
culated value of P/P; is 1.085, (7), the value of P/Py
for b/c=4/3 as given above is about one per cent low.
In extrapolating for b/c between 1 and 2 the values cal-
culated for b/c=1, 3/2, and 2 should be used. Thus the
extrapolated value of P/P, for b/c=6/5 is 1.10, This
compares favorably with the experimental value of 1.13
for the power loss ratio, obtained by J. A. Young of
these Laboratories in the case of a helix waveguide with
wire diameter 0.0045’' and separation 0.0009.”

IV. ConNcLyusIiON

An approximate theoretical calculation of heat losses
in a metallic waveguide surface with boundary of
periodic semicircular grooves and of cylindrical wires
has been made, using the magnetic field of a perfect
smooth guide. Also calculated was the displacement of
the effective smooth waveguide wall from the wire axes.
From comparison with experiment it appears that the
theory gives quite a good prediction of the heat loss
when it is borne in mind that the experimental value
will be slightly higher due to leakage into the outer
jacket and the presence of a dielectric coating on the
wire which presumably tends to concentrate the fields
slightly and increase the eddy currents.

I't should also be noted that the results apply to any
low-loss mode in a helix of finite pitch; z.e., any mode
for which, either by accident or design, the wall cur-
rents follow the direction of the wires.!

AprPENDIX 1

We first give the conformal transformation z=2({)
which maps the flat strip in the { plane, Fig. 2(d), into
the strip with the semicircular groove in the z plane,
Fig. 2(a). The successive transformations from the ¢
plane are given by*

: ’ )
RPESCA SN (18)
K(v/w)
where
. 1 dt
mvw:j;vu—mu—w% (19)

is the complete elliptic integral of the first kind and

® W. R. Richmond, “On the electrostatic field of a plane or circular
grating formed of thick round wires,” Proc. Lond. Math. Soc. Ser. 2,
vol. 22, p. 389; 1923.
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modulus v/w. Combining the transformation of (18) we
obtain

K(i tan {)
g =4

20
K(sec{) (20)
We calculate here the expression for P/P, given in (5).

On the semicircle in the z plane, Fig. 2(a), setting
¢=£, 0<:<(x/2) in (20), it is found that

K
T (K —iK)

k = sin &,

21)

4

where K, K’ are the complete elliptic integrals of the
first kind® with complementary moduli % and
k' =+/1—F2, respectively. From (21), it follows that

dz i
= — (22)
ds 2sin £ cos §(K — 1K')?
where use has been made of the identity®
d /K T
~<_ _-—— . (23)
dk\ K 2Kk B2
From (5) and (22),
P 8 [
—_ —f (K% + K'?) sin £ cos EdE
Po 7'1'3 0
8 1
= —f [K (%) ]%dc; c = k. (24)
7r3 0

Since®

1
f (2¢ — 1)K3dc
<o

= [(c = 1)(2c — 1)K? + 2(c — DVKE + E2]o =1, (25)

(24) may be written

P—8<2fll Kdc + 1
Po_7r3 0( c) c >

Finally, as Im ({)—-+ =, sec {—0 and 7 tan {~
— (1 —2¢2%). Hence (5), from (20),

(26)

% s~illog2 —i¢), as Im(§) — + w.  (27)

AprpeENDIX II

We here determine P/P, as given by (14), where W
and z are given as functions of { by (10) and (11). The
quantities N and ¢ are given by (12) and (13) which
arise from the condition that OC=0D=c¢ in Fig. 4(a),
namely, with
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0 < tan™! <
(a — 1) 2
2b
—— tan™! —_—
(1 +N) (d - 1)
= ¢ = 1/ - (28)
7r(1 + >\) (e +1)

The points 4, B, C, D, E, F, G, H in the 2z plane cor-
respond to the points with the same letters in the {
plane, Fig. 4(b), which is cut along the real axis from
—1to 4+ » and from —a to — . From (10), Im (W) =
for {=£+140, —1<E<1; d.e., on the section BCD. In
the z plane this section is close to a semicircle if /¢ is
not close to 1 in which case the section is closer to a
square. For b=2¢ the distance » from the origin O is
equal to ¢ within two per cent and for & =4/3¢ the error
is a little over ten per cent.®

In differential form (10) and (11) are

aw _iHb [+ DY+ ¢+ 9" (29)
& 2 (= DP( A+ DU A+ )

12 — 1/2
dz b [+ 0" +A¢ -] 30)

dr w14 N (= DY+ DU+ o)y

where appropriate values are to be given to the square
roots.
Dividing (29) by (30) we obtain
AW _iHf(1+N) [+ DV 4 G+ o'
ds 2 [+ DV 4a¢ — 1]

As x—+ », |¢|—o, and assigning the appropriate
values to the square roots,

(1)

aw

—— —iH,, as x — -+

dz

aw

— =0, asx— — oo, (32)
dz

the difference arising because of the cuts in the { plane.
This is the desired behavior for W at great distances
P 1

from the wires.
fl <[dW aw ETJE}
Py bHAJ  \Ldz @2V dt didimginn

From (14), (30), and (31),
n [dW aw dz dz:l) i
dz dz dE dEN/ r—t—io

_@+N
B 27

'fl [(a + 1) + 2]
VI =)+ oA+ M)+ (1 - W)

By means of standard transformations® and after con-
siderable reductions it is found that

d¢. (33)
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1 — Ag(sin—t \, B)]
vI— N

+ cos E% 1+ A):I cot [- 1+ x)] (k)) (34)

where Ao(8, &) is Heuman’'s Lambda function,® A is the
smallest positive root of (12), and

2!

. [rc 1+ )\):I
cos? | —
) b2 = 26
(- = - (35)
Finally, we determine the length
N\
d = lim <x - ——>, ¥ =1ImW, (36)
z— o+ H()

Since this is independent of ¥, it is sufficient to take
y=0 and consider the behavior as x—« along DE in
Fig. 4(a) or, equivalently, as £—>« on {=£440, Fig.
4(b). From (29), the square roots all being positive on
¢=£440, £>1,

b N
¥ = 71(1og [+ v = 1]>

T

4 log [<zs +a—1)+ zx/(s—JFTo(E'—T)D, 37

(a+ 1)

since ¥ =0 at £=1; i.e., on the grating. Also, from (11),
for {=£4140, £>1,

. b (10 [(2s+a—1)+2\/(£+«§(£——ﬁ]
A+ N\ E @+ 1)
Qe+a+ D)+ 2WEF EFT)
)\—{—log[ a—1 ]) (38)

Thus, from (36)—(38), letting £— o,

b
= 2L+ N ((1 —N l°g[( n 1)]

S )
).

e
-+ 2\ log tan [— (142N
2b
using (28).
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